Cylinder with Lock ø40, ø50, ఠ63, ø80, ø100

O Suitable for intermediate stops, emergency stops and drop prevention
(O) 2-color indication auto switches can be mounted to the cylinder.

- Small solid state type (D-M9 \square series)
- Magnetic field resistant solid state type (D-P3DW \square series)

Suitable for intermediate stops,

- Simple construction

A force magnifying mechanism is employed based on the wedge effect of the taper ring and steel balls.

© High locking efficiency
Greater locking efficiency as well as stable locking and unlocking operation has been achieved by arranging a large number of steel ball bearings in circular rows. (Unlocking pressure of 36 psi 7 psi lower than conventional SMC products) In addition, both alignability and stable locking force with respect to piston rod eccentricity are obtained by allowing the taper ring to float.
© High reliability and stable holding force
Outstanding durability and stable holding force are maintained by the use of a brake shoe having superior wear resistance, which has also been substantially lengthened. (Double the conventional SMC product)
© Compact lock unit saves space.
The lock unit is extremely compact, without a large overhang.

Cylinder with Lock
Series CNA2

emergency stops and drop prevention

© Can be locked in both directions．

ODesign minimizes the influences of unlocking air quality．
Superior construction design against moisture and drainage in the compressed air has been realized by separating the locking mechanism and the unlocking chamber．

Series Variations

Series	Action	Type	Standard variations		Locking type	Bore size （mm）	Max． stroke （mm）
			Auto switch built－in magnet	With bellows	Spring locking		
Cylinder with lock CNA2 series	$\begin{aligned} & \text { Double } \\ & \text { acting } \end{aligned}$	$\begin{aligned} & \text { Single rod } \\ & \text { CNA2 } \\ & \text { series } \end{aligned}$				40	800
						50	1200
						63	
		w				80	1400
		series				100	1500

厅SMC
Max．piston speed： 1000 mm／s Can be operated at 50 to $1000 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range．

OManual override for unlocking
Even if the air supply is blocked or exhausted，lock release is possible．The fail safe mechanism locks again when the manual override is released．

Reed auto switch	Band mounting	$\begin{aligned} & \text { D-B54/B64, D-B59W, D-A3口 } \\ & \text { D-A44 } \end{aligned}$
	Tie－rod mounting	$\begin{aligned} & \text { D-A9ロ, D-A54/A64, D-A59W } \\ & \text { D-A3ロC, D-A44C } \end{aligned}$
Solid state auto switch	Band mounting	D－G5■／K59，D－G5NTL D－G5—W／K59W，D－G5BAL D－G59F，D－G39／K39
	Tie－rod mounting	D－M9■，D－M9■W，D－M9■AL D－J51，D－F5NTL，D－F59F D－G39C／K39C，D－P3DW

Features 2

Precautions on Model Selection

© Warning

1. In order that the originally selected maximum speed is not exceeded, be certain to use a speed controller to adjust the total movement distance of the load so that movement takes place in no less than the applicable movement time.
The movement time is the time that is necessary for the load to travel the total movement distance from the start without any intermediate stops.
2. In cases where the cylinder stroke and the movement distance of the load are different (double speed mechanism, etc.), use the movement distance of the load for selection purposes.

3. The following selection example and procedures are based on use at the intermediate stop (including emergency stops during the operation). However, when the cylinder is in the locked state such as drop prevention, kinetic energy does not act upon it. Under these conditions, use the load weight at the maximum speed (V) of $100 \mathrm{~mm} / \mathrm{s}$ shown in Chart (5) to (7) on page 2 depending on the operating pressure and select models.

Selection Example		
- Load weight: $\quad \mathbf{m}=50 \mathrm{~kg}$ - Movement distance: $\mathbf{s t}=500 \mathrm{~mm}$ - Movement time: $\mathbf{t}=2 \mathrm{~s}$		
- Load condition: \quad Vertical downward $=$Load in direction of rod extension		
- Operating pressure: $\mathbf{P}=58 \mathrm{psi}$		

Step (1): From Chart (1) find the maximum movement speed of the load.
\therefore Maximum speed $\mathbf{V} \approx 350 \mathrm{~mm} / \mathrm{s}$
Step (2): Select Chart (6) based upon the load conditions and operating pressure, and then from the intersection of the maximum speed $\mathbf{V}=350 \mathrm{~mm} / \mathrm{s}$ found in Step (1), and the load weight $\mathbf{m}=50 \mathrm{~kg}$.
$\therefore \varnothing 63 \rightarrow$ Decided the bore size CNA2 $\square 63$ or more.

Step (1) Find the maximum load speed V.

Find the maximum load speed: \mathbf{V} (mm/s) from the load movement time: $\mathbf{t}(\mathrm{s})$ and the movement distance: st (mm).

Chart (1)

Step (2) Find the bore size.

Select a chart based upon the load condition and operating pressure, and then find the point of intersection for the maximum speed found in Step (1) and the load weight. Select the bore size on the line above the point of intersection.

\section*{| Load Condition | Operating Pressure |
| :--- | :--- |}

Load in the direction at the right angle to rod (* Being held by a guide)

Load in the direction of rod extension Load in the direction of rod retraction

Chart (7)
$73 \mathrm{psi} \leq \mathbf{P}$

Cylinder with Lock Double Acting，Single Rod Series CNA2 ø40，ø50，ø63，ø80，ø100

How to Order

Applicable Auto Switches／Refer to Best Pneumatics No． 3 for further information on auto switches．

	Special function	Electrical entry		Wiring （Output）	Load voltage			Auto switch model		Lead wire length（ m ）				Pre－wired connector	Applicable load	
Type					DC		AC	Tie－rod mounting	$\begin{gathered} \text { Band } \\ \text { mounting } \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
		Grommet		N）	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	－	M9N	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay， PLC
								－	G59	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		
				3－wire（PNP）				M9P	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
								－	G5P	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		
	－			2－wire		12 V		M9B	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	
								－	K59	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		
					－	－	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	－	\bigcirc	－	\bigcirc	\bigcirc	－		
		Terminal		3－wire（NPN）	24 V	12 V	－	G39C	G39	－	－	－	－	－		
		conduit		2－wire				K39C	K39	－	－	－	－	－	IC circuit	
	Diagnostic indication （2－color indication）	Grommet	Yes	3 －wire（NPN）		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
								－	G59W	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		
				3－wire（PNP）				M9PW	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
								－	G5PW	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		
				2－wire		12 V		M9BW	K59W	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	
	Water resistant （2－color indication）			3－wire（NPN）		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NA	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				3－wire（PNP）				M9PA	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2－wire		12 V		M9BA	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2－wire				－	G5BA	－	－	\bigcirc	\bigcirc	\bigcirc		
	With diagnostic output（2－color indication）			4－wire（NPN）		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	G59F	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	IC circuit	
	Magnetic field resistant（2－color indication）			2－wire（Non－polar）		－		P3DW	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	
		Grommet	Yes	3 －wire（NPN equivalent）	－	5 V	－	A96	－	\bigcirc	－	\bigcirc	－	－	IC circuit	－
				2－wire	24 V	12 V	100 V	A93	－	\bigcirc	－	\bigcirc	－	－	－	Relay， PLC
			No				100 V or less	A90	－	\bigcirc	－	\bigcirc	－	－	IC circuit	
			Yes				$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	B54	\bigcirc	－	\bigcirc	\bigcirc	－	－	
			No				200 V or less	A64	B64	\bigcirc	－	\bigcirc	－	－		
		Terminal	Yes				－	A33C	A33	－	－	－	－	－		PLC
		conduit					$100 \mathrm{~V}, 200 \mathrm{~V}$	A34C	A34	－	－	－	－	－		Relay， PLC
		DIN terminal						A44C	A44	－	－	－	－	－		
	Diagnostic indication（2－color indication）	Grommet				－	－	A59W	B59W	\bigcirc	－	\bigcirc	－	－		

＊Lead wire length symbols： $0.5 \mathrm{~m} \ldots \ldots$ Nil（Example）M9NW＊Solid state auto switches marked with＂○＂are produced upon receipt of order．

$$
\begin{array}{ll}
1 \mathrm{~m} \ldots . . \mathrm{M} & \text { (Example) M9NWM } \\
3 \mathrm{~m} \ldots . . & \mathrm{L} \\
5 \mathrm{~m} \ldots . . \mathrm{Z} & \text { (Example) M9NWL } \\
\text { (Example) M9NWZ }
\end{array}
$$

＊Since there are other applicable auto switches than listed，refer to page 28 for details．
For details about auto switches with pre－wired connector，refer to Best Pneumatics No．3．Refer to CAT．ES20－201 catalog for the D－P3DW口．
＊The D－A9■／M9Пロロ／P3DWロ auto switches are shipped together，（but not assembled）．（Only auto switch mounting brackets are assembled at the time of shipment for the D－A9■／M9■ロロ．）

Cylinder with Lock Double Acting, Single Rod

Symbol
Double acting,
Single rod

Made to Order	Made to Order (For details, refer to Best Pneumatics No. 3.)
Symbol	Specifications
-XA	Change of rod end shape
-XC3	Special port location
-XC4	With heavy duty scraper
-XC11	Dual stroke cylinder/Single rod
-XC14	Change of trunnion bracket mounting position
-XC15	Change of tie-rod length
-XC35	With coil scraper

Refer to pages 23 to 28 for cylinders with auto switches.

- Minimum stroke for auto switch mounting
- Auto switch proper mounting position (detection at stroke end) and mounting height
- Operating range
- Auto switch mounting bracket/Part no.

Minimum mountable stroke for a cylinder with auto switch(es)

\triangle Caution

1. Each switch and mounting style of cylinder has a different minimum mountable stroke. Be especially careful of the center trunnion style.
(Refer to pages 25 and 26 for details.)

Specifications

Bore size (mm)	40	50	63	80	100
Lubrication	Not required (Non-lube)				
Action	Double acting				
Proof pressure	218 psi				
Max. operating pressure	145 psi				
Min. operating pressure	12 psi				
Piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient and fluid temperature	Without auto switch: 15 to $160^{\circ} \mathrm{F}$ (No freezing) With auto switch: 15 to $140^{\circ} \mathrm{F}$ (No freezing)				
Cushion	Air cushion				
Stroke length tolerance	Up to 250: ${ }_{0}^{+1.0}$, 251 to 1000: ${ }_{0}^{+1.4}$, 1001 to 1500: ${ }_{0}^{+1.8}$				
Mounting	Basic, Axial foot, Rod flange, Head flange, Single clevis, Double clevis, Center trunnion				

* Load limits exist depending on the piston speed when locked, mounting direction and operating pressure.

Lock Specifications

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	100
Locking action	Spring locking (Exhaust locking)				
Unlocking pressure	36 psi or more				
Lock starting pressure	145 psi or less				
Max. operating pressure	Both directions				
Locking direction	3430				
Holding force (N)	882	1370	2160	5390	

* Be sure to select cylinders in accordance with the procedures on page 1.

Standard Stroke
 For cases with auto switches, refer to the table of minimum stroke for auto switch mounting on pages 25 and 26 .

Bore size (mm)	Standard stroke (mm) Note 1)	Long stroke (mm) Note 2)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500$	800
	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600$	1200
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600,700$	
	$\varnothing 100: 1500$	

Note 1) Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes.
Note 2) Long stroke applies to the axial foot and the rod flange. When exceeding the stroke range for each bracket, determine the maximum stroke referring to the Selection Table (front matter 29 in Best Pneumatics No. 2).

Stopping Accuracy

Lock type	Piston speed (mm/s)			
	100	300	500	1000
Spring locking	± 0.3	± 0.6	± 1.0	± 2.0

Condition: Lateral, Supply pressure $\mathrm{P}=73 \mathrm{psi}$
Load weight Upper limit of allowed value
Solenoid valve for locking mounted on the unlocking port
Maximum value of stopping position dispersion from 100 measurements

Mounting Bracket/Part No.

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Axial foot *	CA2-L04	CA2-L05	CA2-L06	CA2-L08	CA2-L10
Flange	CA2-F04	CA2-F05	CA2-F06	CA2-F08	CA2-F10
Single clevis	CA2-C04	CA2-C05	CA2-C06	CA2-C08	CA2-C10
Double clevis ${ }^{* *}$	CA2-D04	CA2-D05	CA2-D06	CA2-D08	CA2-D10

* When ordering axial foot bracket, order 2 pieces per cylinder.
** Clevis pin, flat washer and split pin are shipped together with double clevis.

Bellows Material

Symbol	Bellows material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$160^{\circ} \mathrm{F}$
\mathbf{K}	Heat resistant tarpaulin	$230^{\circ} \mathrm{F} *$

* Maximum ambient temperature for bellows itself

Accessories

Mounting		Basic	Axial foot	Rod flange	Head flange	Single clevis	Double clevis	Center trunnion
Standard equipment	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Single knuckle joint	\bigcirc						
	Double knuckle joint (With pin)	\bigcirc						
	With bellows	\bigcirc						

Weight

Construction Principle

Unlocked state

Locked state

Spring locking (Exhaust locking)

The spring force which acts upon the taper ring is magnified by a wedge effect, and is conveyed to all of the numerous steel balls which are arranged in two circles. These act on the brake shoe holder and brake, which lock the piston rod by tightening against it with a large force.
Unlocking is accomplished when air pressure is supplied to the unlocking port. The brake piston and taper ring oppose the spring force, moving to the left side, and the ball retainer strikes the cover section A. The braking force is released as the steel balls are removed from the taper ring by the ball retainer.

Series CNA2

Construction

A section: $\varnothing 50$ to $\varnothing 100$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum alloy	Metallic painted after hard anodized
$\mathbf{2}$	Head cover	Aluminum alloy	Metallic painted
$\mathbf{3}$	Cover	Aluminum alloy	Metallic painted after chromated
$\mathbf{4}$	Cylinder tube	Aluminum alloy	Hard anodized
$\mathbf{5}$	Piston rod	Carbon steel	Hard chrome plated
$\mathbf{6}$	Piston	Aluminum alloy	Chromated
$\mathbf{7}$	Taper ring	Bearing steel	Heat treated
$\mathbf{8}$	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
$\mathbf{1 0}$	Brake shoe holder	Special steel	Heat treated
$\mathbf{1 1}$	Release piston	Aluminum alloy	Hard anodized (ø40, ø50, ø63)
	Chromated (ø80, ø100)		
$\mathbf{1 2}$	Release piston bushing	Steel + Special resin	Only ø80, ø100
13	Unlocking cam	Chromium	Zinc chromated
$\mathbf{1 4}$	Washer		Calybdenum steel

Component Parts			
No.			
Description			
Material			
$\mathbf{3 4}$			
Element			
Bronze			

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
40	MB 40-PS	Including (39, 40, 43, (45).
50	MB 50-PS	
63	MB 63-PS	
80	MB 80-PS	
100	MB100-PS	
* Since the lock of the CNA2 series cannot be disassembled and is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.		
* Seal kit includes a grease pack ($\varnothing 40$ and $\varnothing 50: 10 \mathrm{~g}, \varnothing 63$ and $\varnothing 80: 20 \mathrm{~g}, \varnothing 100$: 30 g). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)		

Dimensions
Basic (B): CNA2B

With bellows

Bore size (mm)	Stroke range (mm)	A	AL	B	B_{1}	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}	J	K
40	Up to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	50	16	12	12	10	51	8	M8 $\times 1.25$	6
50	Up to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56	20	13	15	12	58	11	M8 $\times 1.25$	7
63	Up to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	65	20	18	12	15	58	11	M10 $\times 1.25$	7
80	Up to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	79.5	20	23	18	17	71	13	M12 $\times 1.75$	10
100	Up to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	93.5	22	25	20	19	72	16	M12 x 1.75	10

Bore size (mm)	KA	\mathbf{M}	$\mathbf{M M}$	\mathbf{N}	\mathbf{P}	\mathbf{S}	\mathbf{T}	\mathbf{V}	$\mathbf{Z Z}$
$\mathbf{4 0}$	14	11	M14 $\times 1.5$	27	$1 / 4$	153	37.5	9	215
$\mathbf{5 0}$	18	11	$\mathrm{M} 18 \times 1.5$	30	$3 / 8$	168	44	11	237
$\mathbf{6 3}$	18	14	$\mathrm{M} 18 \times 1.5$	31	$3 / 8$	182	52.5	12	254
$\mathbf{8 0}$	22	17	M 22×1.5	37	$1 / 2$	218	59.5	15	306
$\mathbf{1 0 0}$	26	17	$\mathrm{M} 26 \times 1.5$	40	$1 / 2$	246	69.5	15	335

With Bellows						(mm)
$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Stroke range (mm)	e	f	h	ℓ	ZZ
40	20 to 500	43	11.2	59	1/4 stroke	223
50	20 to 600	52	11.2	66	1/4 stroke	245
63	20 to 600	52	11.2	66	1/4 stroke	262
80	20 to 750	65	12.5	80	1/4 stroke	315
100	20 to 750	65	14	81	1/4 stroke	344

Dimensions

Axial foot (L): CNA2L

Long stroke ($\varnothing 50$ to $\varnothing 100$) 1001 stroke or longer

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}	J	K
40	Up to 800	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	50	16	12	12	10	51	8	M8 $\times 1.25$	6
50	Up to 1200	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56	20	13	15	12	58	11	M8 $\times 1.25$	7
63	Up to 1200	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	65	20	18	12	15	58	11	M10 $\times 1.25$	7
80	Up to 1400	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	79.5	20	23	18	17	71	13	M12 $\times 1.75$	10
100	Up to 1500	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	93.5	22	25	20	19	72	16	M12 $\times 1.75$	10

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	KA	LD	LH	LS	LT	LX	LY	MM	N	P	RT	RY	S	T	V	X	Y	Z	ZZ
40	14	9	40	207	3.2	42	70	M14 $\times 1.5$	27	1/4	-	-	153	37.5	9	27	13	24	244
50	18	9	45	222	3.2	50	80	M18 $\times 1.5$	30	3/8	30	76	168	44	11	27	13	31	266
63	18	11.5	50	250	3.2	59	93	M18 $\times 1.5$	31	3/8	40	92	182	52.5	12	34	16	24	290
80	22	13.5	65	306	4.5	76	116	M 22×1.5	37	1/2	45	112	218	59.5	15	44	16	27	349
100	26	13.5	75	332	6.0	92	133	M 26×1.5	40	1/2	50	136	246	69.5	15	43	17	29	378

With BellowsBore size (mm)	Stroke range (mm)	\mathbf{e}	\mathbf{f}	\mathbf{h}	$\boldsymbol{\ell}$	$\mathbf{Z Z}$
$\mathbf{4 0}$	20 to 800	43	11.2	59	$1 / 4$ stroke	252
$\mathbf{5 0}$	20 to 1200	52	11.2	66	$1 / 4$ stroke	274
$\mathbf{6 3}$	20 to 1200	52	11.2	66	$1 / 4$ stroke	298
$\mathbf{8 0}$	20 to 1400	65	12.5	80	$1 / 4$ stroke	358
$\mathbf{1 0 0}$	20 to 1500	65	14	81	$1 / 4$ stroke	387

Cylinder with Lock Double Acting, Single Rod

Dimensions

Rod flange (F): CNA2F

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BF	BN	BP	BQ	C	D	E	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}
40	Up to 800	30	27	60	22	71	96	1/8	1/8	44	16	32	9	12	60	80	42	100	85	15	50	16	12	12	10	51	8
50	Up to 1000	35	32	70	27	81	108	1/4	1/8	52	20	40	9	12	70	90	50	110	95	17	56	20	13	15	12	58	11
63	Up to 1000	35	32	86	27	101	115	1/4	1/4	64	20	40	11.5	15	86	105	59	130	102	17	65	20	18	12	15	58	11
80	Up to 1000	40	37	102	32	119	139	1/4	1/4	78	25	52	13.5	18	102	130	76	160	123	21	79.5	20	23	18	17	71	13
100	Up to 1000	40	37	116	41	133	160	1/4	1/4	92	30	52	13.5	18	116	150	92	180	144	21	93.5	22	25	20	19	72	16

Bore size (mm)														\mathbf{J}	\mathbf{K}	$\mathbf{K A}$	\mathbf{M}	$\mathbf{M M}$	\mathbf{N}	\mathbf{P}	\mathbf{S}	\mathbf{T}	\mathbf{V}	$\mathbf{Z Z}$
$\mathbf{4 0}$	$\mathrm{M} 8 \times 1.25$	6	14	11	$\mathrm{M} 14 \times 1.5$	27	$1 / 4$	153	37.5	9	215													
$\mathbf{5 0}$	$\mathrm{M} 8 \times 1.25$	7	18	11	$\mathrm{M} 18 \times 1.5$	30	$3 / 8$	168	44	11	237													
$\mathbf{6 3}$	$\mathrm{M} 10 \times 1.25$	7	18	14	$\mathrm{M} 18 \times 1.5$	31	$3 / 8$	182	52.5	12	254													
$\mathbf{8 0}$	$\mathrm{M} 12 \times 1.75$	10	22	17	$\mathrm{M} 22 \times 1.5$	37	$1 / 2$	218	59.5	15	306													
$\mathbf{1 0 0}$	$\mathrm{M} 12 \times 1.75$	10	26	17	$\mathrm{M} 26 \times 1.5$	40	$1 / 2$	246	69.5	15	335													

With Bellows							
Bore size (mm)	Stroke range (mm)	\mathbf{d}^{*}	\mathbf{e}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	$\mathbf{Z Z}$
$\mathbf{4 0}$	20 to 800	52	43	15	59	$1 / 4$ stroke	223
$\mathbf{5 0}$	20 to 1000	58	52	15	66	$1 / 4$ stroke	245
$\mathbf{6 3}$	20 to 1000	58	52	17.5	66	$1 / 4$ stroke	262
$\mathbf{8 0}$	20 to 1000	80	65	21.5	80	$1 / 4$ stroke	315
$\mathbf{1 0 0}$	20 to 1000	80	65	21.5	81	$1 / 4$ stroke	344

Long Stroke												
Bore size (mm)	Stroke range (mm)	BF	FD	FT	FX	FY	FZ	H	M	RT	RY	ZZ
$\mathbf{5 0}$	1001 to 1200	88	9	20	120	58	144	67	6	30	76	241
$\mathbf{6 3}$	1001 to 1200	105	11.5	23	140	64	170	71	10	40	92	263
$\mathbf{8 0}$	1001 to 1400	124	13.5	28	164	84	198	87	12	45	112	317
$\mathbf{1 0 0}$	1001 to 1500	140	13.5	29	180	100	220	89	12	50	136	347

With Long Stroke Bellows							
Bore size (mm)	Stroke range (mm)	\mathbf{d}	\mathbf{e}^{*}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	$\mathbf{Z Z}$
$\mathbf{5 0}$	1001 to 1200	58	52	19	66	$1 / 4$ stroke	240
$\mathbf{6 3}$	1001 to 1200	58	52	19	66	$1 / 4$ stroke	258
$\mathbf{8 0}$	1001 to 1400	80	65	21	80	$1 / 4$ stroke	310
$\mathbf{1 0 0}$	1001 to 1500	80	65	21	81	$1 / 4$ stroke	339

* When machining a hole to put a bellows through for mounting, make the hole larger than the O.D. ød of the bellows mounting bracket for the standard stroke and the bellows O.D. øe for a long stroke.

Dimensions

Head flange (G): CNA2G

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Stroke range (mm)	A	AL	B	B1	BF	BN	BP	BQ	C	D	E	F	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H
40	Up to 500	30	27	60	22	71	96	1/8	1/8	44	16	32	10	9	12	60	80	42	100	85	15	50	16	12	12	10	51
50	Up to 600	35	32	70	27	81	108	1/4	1/8	52	20	40	10	9	12	70	90	50	110	95	17	56	20	13	15	12	58
63	Up to 600	35	32	86	27	101	115	1/4	1/4	64	20	40	10	11.5	15	86	105	59	130	102	17	65	20	18	12	15	58
80	Up to 750	40	37	102	32	119	139	1/4	1/4	78	25	52	14	13.5	18	102	130	76	160	123	21	79.5	20	23	18	17	71
100	Up to 750	40	37	116	41	133	160	1/4	1/4	92	30	52	14	13.5	18	116	150	92	180	144	21	93.5	22	25	20	19	72

Bore size (mm)															\mathbf{H}	\mathbf{J}	\mathbf{K}	$\mathbf{K A}$	$\mathbf{M M}$	\mathbf{N}	\mathbf{P}	\mathbf{S}	\mathbf{T}	\mathbf{V}	$\mathbf{Z Z}$
$\mathbf{4 0}$	$\mathbf{8}$	$\mathrm{M} 8 \times 1.25$	6	14	$\mathrm{M} 14 \times 1.5$	27	$1 / 4$	153	37.5	9	216														
$\mathbf{5 0}$	11	$\mathrm{M} 8 \times 1.25$	7	18	$\mathrm{M} 18 \times 1.5$	30	$3 / 8$	168	44	11	238														
$\mathbf{6 3}$	11	$\mathrm{M} 10 \times 1.25$	7	18	$\mathrm{M} 18 \times 1.5$	31	$3 / 8$	182	52.5	12	255														
$\mathbf{8 0}$	$\mathbf{1 3}$	$\mathrm{M} 12 \times 1.75$	10	22	$\mathrm{M} 22 \times 1.5$	37	$1 / 2$	218	59.5	15	307														
$\mathbf{1 0 0}$	16	$\mathrm{M} 12 \times 1.75$	10	26	$\mathrm{M} 26 \times 1.5$	40	$1 / 2$	246	69.5	15	336														

With Bellows

Bore size (mm)	Stroke range (mm)	\mathbf{e}	\mathbf{f}	\mathbf{h}	$\boldsymbol{\ell}$	$\mathbf{Z Z}$
$\mathbf{4 0}$	20 to 500	43	11.2	59	$1 / 4$ stroke	224
$\mathbf{5 0}$	20 to 600	52	11.2	66	$1 / 4$ stroke	246
$\mathbf{6 3}$	20 to 600	52	11.2	66	$1 / 4$ stroke	263
$\mathbf{8 0}$	20 to 750	65	12.5	80	$1 / 4$ stroke	316
$\mathbf{1 0 0}$	20 to 750	65	14	81	$1 / 4$ stroke	345

Cylinder with Lock Double Acting, Single Rod

Dimensions

Single clevis (C): CNA2C

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stroke range } \\ (\mathrm{mm}) \end{array} \\ \hline \end{array}$	A	AL	B	B1	BN	BP	BQ	C	CDH10	CX	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H
40	Up to 500	30	27	60	22	96	1/8	1/8	44	$10^{+0.058}$	$15_{-0.3}^{-0.1}$	16	32	10	85	15	50	16	12	12	10	51
50	Up to 600	35	32	70	27	108	1/4	1/8	52	$12^{+0.070}$	$18{ }_{-0.3}^{-0.1}$	20	40	10	95	17	56	20	13	15	12	58
63	Up to 600	35	32	86	27	115	1/4	1/4	64	$16_{0}^{+0.070}$	$25_{-0.3}^{-0.1}$	20	40	10	102	17	65	20	18	12	15	58
80	Up to 750	40	37	102	32	139	1/4	1/4	78	$20^{+0.084}$	$31.5_{-0.3}^{-0.1}$	25	52	14	123	21	79.5	20	23	18	17	71
100	Up to 750	40	37	116	41	160	1/4	1/4	92	$25_{0}^{+0.084}$	$35.5{ }_{-0.3}^{-0.1}$	30	52	14	144	21	93.5	22	25	20	19	72

Bore size (mm)	$\mathbf{H} \mathbf{1}$	\mathbf{J}	\mathbf{K}	$\mathbf{K A}$	\mathbf{L}	$\mathbf{M M}$	\mathbf{N}	\mathbf{P}	$\mathbf{R R}$	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{4 0}$	8	$\mathrm{M} 8 \times 1.25$	6	14	30	$\mathrm{M} 14 \times 1.5$	27	$1 / 4$	10	153	37.5	16	9	234	244
$\mathbf{5 0}$	11	$\mathrm{M} 8 \times 1.25$	7	18	35	$\mathrm{M} 18 \times 1.5$	30	$3 / 8$	12	168	44	19	11	261	273
$\mathbf{6 3}$	11	$\mathrm{M} 10 \times 1.25$	7	18	40	$\mathrm{M} 18 \times 1.5$	31	$3 / 8$	16	182	52.5	23	12	280	296
$\mathbf{8 0}$	13	$\mathrm{M} 12 \times 1.75$	10	22	48	$\mathrm{M} 22 \times 1.5$	37	$1 / 2$	20	218	59.5	28	15	337	357
$\mathbf{1 0 0}$	16	$\mathrm{M} 12 \times 1.75$	10	26	58	$\mathrm{M} 26 \times 1.5$	40	$1 / 2$	25	246	69.5	36	15	376	401

With Bellows

Bore size (mm)	Stroke range (mm)	\mathbf{e}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{4 0}$	20 to 500	43	11.2	59	$1 / 4$ stroke	242	252
$\mathbf{5 0}$	20 to 600	52	11.2	66	$1 / 4$ stroke	269	281
$\mathbf{6 3}$	20 to 600	52	11.2	66	$1 / 4$ stroke	288	304
$\mathbf{8 0}$	20 to 750	65	12.5	80	$1 / 4$ stroke	346	366
$\mathbf{1 0 0}$	20 to 750	65	14	81	$1 / 4$ stroke	385	410

Series CNA2

Dimensions

Double clevis (D): CNA2D

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	CDH10	CX	CZ	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}	J	K
40	Up to 500	30	27	60	22	96	1/8	1/8	44	$10^{+0.0}$	$15_{+0.1}^{+0.3}$	29.5	16	32	10	85	15	50	16	12	12	10	51	8	M8 $\times 1.25$	6
50	Up to 600	35	32	70	27	108	1/4	1/8	52	$12^{+0.070}$	$18{ }_{+0.1}^{+0.3}$	38	20	40	10	95	17	56	20	13	15	12	58	11	M8 $\times 1.25$	7
63	Up to 600	35	32	86	27	115	1/4	1/4	64	$16^{+0.070}$	$25_{+0.1}^{+0.3}$	49	20	40	10	102	17	65	20	18	12	15	58	11	M10 $\times 1.25$	7
80	Up to 750	40	37	102	32	139	1/4	1/4	78	$20^{+0.084}$	$31.5_{+0.1}^{+0.3}$	61	25	52	14	123	21	79.5	20	23	18	17	71	13	M12 $\times 1.75$	10
100	Up to 750	40	37	116	41	160	1/4	1/4	92	$25_{0}^{+0.084}$	$35.5_{+0.1}^{+0.3}$	64	30	52	14	144	21	93.5	22	25	20	19	72	16	M12 $\times 1.75$	10

(mm)													With Bellows						(mm)	
Bore size (mm)	KA	L	MM	N	P	RR	S	T	U	V	Z	ZZ	Bore size (mm)	Stroke range (mm)	e	f	h	ℓ	Z	ZZ
40	14	30	M14 $\times 1.5$	27	1/4	10	153	37.5	16	9	234	244	40	20 to 500	43	11.2	59	1/4 stroke	242	252
50	18	35	M18 1.5	30	3/8	12	168	44	19	11	261	273	50	20 to 600	52	11.2	66	1/4 stroke	269	281
63	18	40	M18 1.5	31	3/8	16	182	52.5	23	12	280	296	63	20 to 600	52	11.2	66	1/4 stroke	288	304
80	22	48	M 22×1.5	37	1/2	20	218	59.5	28	15	337	357	80	20 to 750	65	12.5	80	1/4 stroke	346	366
100	26	58	M26 x 1.5	40	1/2	25	246	69.5	36	15	376	401	100	20 to 750	65	14	81	1/4 stroke	385	410

* Clevis pin, flat washer and split pin are shipped together.

Double Clevis Pivot Bracket

Material: Cast iron

Part no.	Bore size (mm)	B	DA	DC	DDi10 (hole)	DE	DF	DH	DL	DO	DR	DS	DT	DU	DX	Z
CA2-B04	40	60	57	65	$10_{0}^{+0.058}$	85	52	40	35	10	9	8	17	11	15	234
CA2-B05	50	70	57	65	$12^{+0.070}$	85	52	40	35	10	9	8	17	11	18	261
CA2-B06	63	85	67	80	$16_{0}^{+0.070}$	105	66	50	40	12.5	11	10	22	13.5	25	280
CA2-B08	80	102	93	100	$20_{0}^{+0.084}$	130	90	65	60	15	13.5	12	24	16.5	31.5	337
CA2-B10	100	116	93	100	$25^{+0.084}$	130	90	65	60	15	13.5	12	24	16.5	35.5	376

Rotating Angle

Note 1) There is no mention of cylinder part number. Note 2) Order it separately from cylinder.

Cylinder with Lock Double Acting, Single Rod

Dimensions

Center trunnion (T): CNA2T

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}	J	K	KA	MM
40	25 to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	50	16	12	12	10	51	8	M8 $\times 1.25$	6	14	M14 $\times 1.5$
50	25 to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56	20	13	15	12	58	11	M8 $\times 1.25$	7	18	M18 $\times 1.5$
63	32 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	65	20	18	12	15	58	11	M10 $\times 1.25$	7	18	M18 $\times 1.5$
80	41 to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	79.5	20	23	18	17	71	13	M12 $\times 1.75$	10	22	M 22×1.5
100	45 to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	93.5	22	25	20	19	72	16	M12 $\times 1.75$	10	26	M26 x 1.5

Bore size $(\mathbf{m m})$	\mathbf{N}	\mathbf{P}	\mathbf{S}	\mathbf{T}	TDe8	TT	TX	TY	TZ	\mathbf{V}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{4 0}$	27	$1 / 4$	153	37.5	$15_{-0.059}^{-0.032}$	22	85	62	117	9	162	209
$\mathbf{5 0}$	30	$3 / 8$	168	44	$15_{-0.059}^{-0.052}$	22	95	74	127	11	181	232
$\mathbf{6 3}$	31	$3 / 8$	182	52.5	$18_{-0.059}^{-0.059}$	28	110	90	148	12	191	246
$\mathbf{8 0}$	37	$1 / 2$	218	59.5	$25_{-0.073}^{-0.040}$	34	140	110	192	15	231	296
$\mathbf{1 0 0}$	40	$1 / 2$	246	69.5	$25_{-0.073}^{-0.040}$	40	162	130	214	15	255	326

With Bellows							
Bore size (mm)	Stroke range $(\mathbf{m m})$	\mathbf{e}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	\mathbf{Z}	$\mathbf{Z Z}$
$\mathbf{4 0}$	25 to 500	43	11.2	59	$1 / 4$ stroke	170	217
$\mathbf{5 0}$	25 to 600	52	11.2	66	$1 / 4$ stroke	189	240
$\mathbf{6 3}$	32 to 600	52	11.2	66	$1 / 4$ stroke	199	254
$\mathbf{8 0}$	41 to 750	65	12.5	80	$1 / 4$ stroke	240	305
$\mathbf{1 0 0}$	45 to 750	65	14	81	$1 / 4$ stroke	264	335

Trunnion Pivot Bracket

Series CNA2
 Accessory Bracket Dimensions

Y Type Double Knuckle Joint

(mm)														
Part no.	Applicable bore size (mm)	A_{1}	D_{1}	E_{1}	L	L1	MM	ND	NX	NZ	R1	\mathbf{U}_{1}	Split pin size	Flat washer size
Y-04D	40	22	10	24	55.5	55	M14 x 1.5	12	$16_{+0.1}^{+0.3}$	38	13	25	ø3 $\times 18$ l	Polished round 12
Y-05D	50, 63	27	14	28	55.5	60	M18 $\times 1.5$	12	$16_{+0.1}^{+0.3}$	38	15	27	ø3 $\times 18 \ell$	Polished round 12
Y-08D	80	37	18	36	76.5	71	M22 $\times 1.5$	18	$28_{+0.1}^{+0.3}$	55	19	28	$\varnothing 4 \times 25 \ell$	Polished round 18
Y-10D	100	37	21	40	83	83	M26 x 1.5	20	$30_{+0.1}^{0+3}$	61	21	38	$\varnothing 4 \times 30$ e	Polished round 20

* Knuckel pin, split pin and flat washer are shipped together.

Clevis Pin/Knuckle Pin

Material: Carbon steel									(mm)
Part no.	Applicable bore size		Dd9	Drill through	L	ℓ	m	Applicable split pin	Applicable flat washer
	Clevis	Knuckle							
CDP-2A	40	-	$10_{-0.076}^{-0.040}$	3	46	38	4	$\varnothing 3 \times 18 \ell$	Polished round 10
CDP-3A	50	40, 50, 63	$12_{-0.093}^{-0.050}$	3	55.5	47.5	4	ø3×18 ℓ	Polished round 12
CDP-4A	63	-	$16_{-0.093}^{-0.050}$	4	71	61	5	$\varnothing 4 \times 25 \ell$	Polished round 16
CDP-5A	-	80	$18_{-0.093}^{-0.050}$	4	76.5	66.5	5	ø 4×25 l	Polished round 18
CDP-6A	80	100	$20_{-0.117}^{-0.065}$	4	83	73	5	¢ $4 \times 30 \ell$	Polished round 20
CDP-7A	100	-	$25_{-0.117}^{-0.065}$	4	88	78	5	¢ $4 \times 36 \ell$	Polished round 24

* Split pin and flat washer are attached.

I Type Single Knuckle Joint

Material: Sulfur free-cutting steel

Material: Sulfur free-cutting steel									(mm)	
Part no.	$\begin{array}{\|c\|} \hline \text { Applicable } \\ \text { bore size } \\ (\mathrm{mm}) \\ \hline \end{array}$	A	A1	E_{1}	L1	MM	NDH10	NX	R1	\mathbf{U}_{1}
I-04A	40	69	22	24	55	M14 $\times 1.5$	$12^{+0.070}$	$16_{-0.3}^{-0.1}$	15.5	20
I-05A	50,63	74	27	28	60	$\mathrm{M} 18 \times 1.5$	$12^{+0.070}$	$16_{-0.3}^{-0.1}$	15.5	20
I-08A	80	91	37	36	71	M22 x 1.5	$18_{0}^{+0.070}$	$28_{-0.3}^{-0.1}$	22.5	26
I-10A	100	105	37	40	83	M26 $\times 1.5$	$20^{+0.084}$	$30_{-0.3}^{-0.1}$	24.5	28

Rod End Nut (Standard equipment)

Material: Rolled steel						
Part no.	Applicable bore size (mm)	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{d}	\mathbf{H}
NT-04	$\mathbf{4 0}$	22	25.4	21	$\mathrm{M} 14 \times 1.5$	8
NT-05	$\mathbf{5 0 , 6 3}$	27	31.2	26	$\mathrm{M} 18 \times 1.5$	11
NT-08	$\mathbf{8 0}$	32	37.0	31	$\mathrm{M} 22 \times 1.5$	13
NT-10	$\mathbf{1 0 0}$	41	47.3	39	$\mathrm{M} 26 \times 1.5$	16

Cylinder with Lock Double Acting，Double Rod Series CNA2W ø40，$\varnothing 50, \varnothing 63, \varnothing 80, ~ \varnothing 100$

How to Order

Applicable Auto Switches／Refer to Best Pneumatics No． 3 for further information on auto switches．

[^0]＊Solid state auto switches marked with＂○＂are produced upon receipt of order．
＊Since there are other applicable auto switches than listed，refer to page 28 for details．
＊For details about auto switches with pre－wired connector，refer to Best Pneumatics No．3．Refer to CAT．ES20－201 catalog for the D－P3DW \square ．
＊The D－A9■／M9■ $\square \square / P 3 D W \square$ auto switches are shipped together，（but not assembled）．（Only auto switch mounting brackets are assembled at the time of shipment for the D－A9ㅁ／M9ロロロ．）

Specifications

Bore size (mm)	40	50	63	80	100
Fluid	Air				
Type	Non-lube				
Action	Double acting				
Lock operation	Spring locking				
Proof pressure	218 psi				
Max. operating pressure	145 psi				
Min. operating pressure	15 psi				
Piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient and fluid temperature	Without auto switch: 15 to $160^{\circ} \mathrm{F}$ (No freezing) With auto switch: 15 to $140^{\circ} \mathrm{F}$ (No freezing)				
Cushion	Air cushion				
Stroke length tolerance	Up to 250: ${ }_{0}^{+1.0}, 251$ to 1000: $0_{0}^{+1.4}, 1001$ to 1500: ${ }_{0}^{+1.8}$				
Mounting	Basic, Axial foot, Rod flange, Center trunnion				

* Load limits exist depending on the piston speed when locked, mounting direction and operating pressure.

Lock Specifications

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Locking action	Spring locking (Exhaust locking)				
Unlocking pressure	36 psi or more				
Lock starting pressure	29 psi or less				
Max. operating pressure	145 psi				
Locking direction	Both directions				
Holding force (N)	882	1370	2160	3430	5390

* Be sure to select cylinders in accordance with the procedures on page 1.

Standard Stroke
For cases with auto switches, refer to the table of minimum stroke for auto switch mounting on pages 25 and 26 .

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$
$\mathbf{5 0 , 6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$

* Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes.

Stopping Accuracy

(mm)				
Lock type	Piston speed (mm/s)			
	100	300	500	1000
Spring locking	± 0.3	± 0.6	± 1.0	± 2.0

Condition: Lateral, Supply pressure $\mathrm{P}=73 \mathrm{psi}$
Load weight Upper limit of allowed value
Solenoid valve for locking mounted on the unlocking port
Maximum value of stopping position dispersion from 100 measurements

Series CNA2W

Mounting Bracket/Part No.

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Axial foot *	CA2-L04	CA2-L05	CA2-L06	CA2-L08	CA2-L10
Flange	CA2-F04	CA2-F05	CA2-F06	CA2-F08	CA2-F10

* When ordering axial foot bracket, order 2 pieces per cylinder.

Bellows Material

Symbol	Bellows material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$160^{\circ} \mathrm{F}$
\mathbf{K}	Heat resistant tarpaulin	$230^{\circ} \mathrm{F}^{*}$

* Maximum ambient temperature for bellows itself

Accessories

* Accessory bracket dimensions are same as those of double acting, single rod type of the CNA2 series. (Refer to page 15.)

Weight

Bore size (mm)			40	50	63	80	100
Basic weight	Basic	Aluminum tube	1.80	2.83	4.22	7.54	11.12
		Steel tube	1.85	2.89	4.26	7.70	11.33
	Axial foot	Aluminum tube	1.99	2.87	4.56	8.21	12.11
		Steel tube	2.04	2.91	4.60	8.37	12.32
	Flange	Aluminum tube	2.17	3.10	5.01	8.99	13.04
		Steel tube	2.22	3.14	5.05	9.15	13.25
	Center trunnion	Aluminum tube	2.25	3.18	5.11	9.24	13.52
		Steel tube	2.35	3.28	5.31	9.53	13.91
Additional weight per each 50 mm of stroke	Mounting bracket	Aluminum tube	0.28	0.37	0.44	0.66	0.86
		Steel tube	0.35	0.47	0.55	0.89	1.15
Accessory bracket	Single knuckle joint		0.23	0.26	0.26	0.60	0.83
	Double knuckle joint (With pin)		0.37	0.43	0.43	0.87	1.27
Calculation: (Example) CNA2WL40-100-D Basic weight $\ldots \ldots \ldots \ldots \ldots .1 .99$ (Axial foot, $\varnothing 40)$ Additional weight $\ldots \ldots .0 .0 .28 / 50$ stroke Cylinder stroke $\ldots \ldots \ldots .100$ stroke $1.99+0.28 \times 100 / 50=2.55 \mathrm{~kg}$							

Cylinder with Lock Double Acting, Double Rod

Construction

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Metallic painted after hard anodized
2	Rod cover	Aluminum alloy	Metallic painted
3	Cover	Aluminum alloy	Metallic painted after chromated
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Taper ring	Bearing steel	Heat treated
8	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
10	Brake shoe holder	Special steel	Heat treated
11	Release piston	Aluminum alloy	Hard anodized ($\varnothing 40, \varnothing 50, \varnothing 63$)
			Chromated (ø80, ø100)
12	Release piston bushing	Steel + Special resin	Only ø80, ø100
13	Unlocking cam	Chromium molybdenum steel	Zinc chromated
14	Washer	Rolled steel	Zinc chromated
15	Retainer pre-load spring	Stainless steel wire	
16	Brake spring	Steel wire	Zinc chromated
17	Clip A	Stainless steel	
18	Clip B	Stainless steel	
19	Steel ball A	Bearing steel	
20	Steel ball B	Bearing steel	
21	Tooth ring	Stainless steel	
22	Bumper	Urethane	
23	Type C retaining ring for unlocking cam shaft	Carbon tool steel	
24	Type \mathbf{C} retaining ring for taper ring	Carbon tool steel	
25	Brake shoe	Special friction material	
26	Unit holding tie-rod	Carbon steel	Chromated
27	Tie-rod	Carbon steel	Zinc chromated
28	Bushing	Copper alloy	
29	Cushion ring	Aluminum alloy	Anodized
30	Cushion valve	Steel wire	Electroless nickel plated
31	Stop ring	Steel for spring	
32	Piston holder	Urethane	
33	Hexagon socket head plug	Carbon steel	Nickel plated

Component Parts

No.	Description	Material	Note
$\mathbf{3 4}$	Element	Bronze	
$\mathbf{3 5}$	Tie-rod nut	Rolled steel	Nickel plated
$\mathbf{3 6}$	Rod end nut	Rolled steel	Nickel plated
$\mathbf{3 7}$	Spring washer	Steel wire	Chromated
$\mathbf{3 8}$	Spring washer	Steel wire	Chromated
39	Piston seal	NBR	
40	Rod seal A	NBR	
$\mathbf{4 1}$	Rod seal B	NBR	
$\mathbf{4 2}$	Release piston seal	NBR	
43	Cushion seal	Urethane	
44	Cushion valve seal	NBR	
45	Tube gasket	NBR	
46	Piston gasket	NBR	
47	Piston guide gasket	NBR	
48	Unlocking cam gasket	NBR	
49	O-ring	NBR	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
$\mathbf{4 0}$	MBW 40-PS	
$\mathbf{5 0}$	MBW 50-PS	
$\mathbf{6 3}$	MBW 63-PS	
$\mathbf{8 0}$	MBW 80-PS	
$\mathbf{1 0 0}$	MBW100-PS	

* Since the lock of the CNA2 series cannot be disassembled and is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.
* Seal kit includes a grease pack ($\varnothing 40$ and $\varnothing 50: 10 \mathrm{~g}, ~ \varnothing 63$ and $\varnothing 80: 20 \mathrm{~g}, \varnothing 100$: 30 g).
Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Dimensions

Cylinder with Lock Double Acting, Double Rod

Dimensions

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	A	AL	B	B1	BF	BN	BP	BQ	C	D	E	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}
40	Up to 500	30	27	60	22	71	96	1/8	1/8	44	16	32	9	12	60	80	42	100	85	15	50	16	12	12	10	51	8
50	Up to 600	35	32	70	27	81	108	1/4	1/8	52	20	40	9	12	70	90	50	110	95	17	56	20	13	15	12	58	11
63	Up to 600	35	32	86	27	101	115	1/4	1/4	64	20	40	11.5	15	86	105	59	130	102	17	65	20	18	12	15	58	11
80	Up to 750	40	37	102	32	119	139	1/4	1/4	78	25	52	13.5	18	102	130	76	160	123	21	79.5	20	23	18	17	71	13
100	Up to 750	40	37	116	41	133	160	1/4	1/4	92	30	52	13.5	18	116	150	92	180	144	21	93.5	22	25	20	19	72	16

(mm)												With Bellows								(mm)
Bore size (mm)	J	K	KA	M	MM	N	P	S	T	V	ZZ	Bore size (mm)	Stroke range (mm)	d	e	f	h	ℓ	ZZ (Single side)	$\begin{gathered} \text { ZZ } \\ \text { (Both sides) } \end{gathered}$
40	M8 $\times 1.25$	6	14	11	M14 $\times 1.5$	27	1/4	153	37.5	9	255	40	20 to 500	52	43	15	59	1/4 stroke	263	271
50	M8 $\times 1.25$	7	18	11	M18 $\times 1.5$	30	3/8	168	44	11	284	50	20 to 600	58	52	15	66	1/4 stroke	292	300
63	M10 x 1.25	7	18	14	M18 $\times 1.5$	31	3/8	182	52.5	12	298	63	20 to 600	58	52	17.5	66	1/4 stroke	306	314
80	M12 $\times 1.75$	10	22	17	M22 $\times 1.5$	37	1/2	218	59.5	15	360	80	20 to 750	80	65	21.5	80	1/4 stroke	369	378
100	M12 $\times 1.75$	10	26	17	M26 $\times 1.5$	40	1/2	246	69.5	15	390	100	20 to 750	80	65	21.5	81	1/4 stroke	399	408

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H	H_{1}	J	K	KA	MM	N
40	25 to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	50	16	12	12	10	51	8	M 8×1.25	6	14	M14 $\times 1.5$	27
50	25 to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56	20	13	15	12	58	11	M 8×1.25	7	18	M18 $\times 1.5$	30
63	32 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	65	20	18	12	15	58	11	M10 1.25	7	18	M18 $\times 1.5$	31
80	41 to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	79.5	20	23	18	17	71	13	M12 $\times 1.75$	10	22	M 22×1.5	37
100	45 to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	93.5	22	25	20	19	72	16	M12 $\times 1.75$	10	26	M26 x 1.5	40

(mm)												With Bellows									(mm)
Bore size (mm)	P	S	T	TDe8	TT	TX	TY	TZ	V	Z	ZZ	Bore size (mm)	Stroke range (mm)	e	f	h	ℓ	$\begin{array}{\|c\|} \hline \mathbf{Z} \\ \text { (Single side) } \end{array}$	$\begin{gathered} \mathbf{Z Z} \\ \text { (Single side) } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{Z} \\ \text { (Both sides) } \end{array}$	$\underset{(\text { Both sides })}{\mathbf{Z Z}}$
40	1/4	153	37.5	${ }_{15-0.059}^{-0.032}$	22	85	62	117	9	162	255	40	25 to 500	43	11.2	59	1/4 stroke	170	263	170	271
50	3/8	168	44	$15_{15_{-0.059}^{-0.032}}$	22	95	74	127	11	181	284	50	25 to 600	52	11.2	66	1/4 stroke	189	292	189	300
63	3/8	182	52.5	$18_{-0.059}^{-0.032}$	28	110	90	148	12	191	298	63	32 to 600	52	11.2	66	1/4 stroke	199	306	199	314
80	1/2	218	59.5	$25^{-0.0040}$	34	140	110	192	15	231	360	80	41 to 750	65	12.5	80	1/4 stroke	240	369	240	378
100	1/2	246	69.5	$25_{-0.043}^{-0.040}$	40	162	130	214	15	255	390	100	45 to 750	65	14	81	1/4 stroke	264	399	264	408

Series CNA2

Auto Switch Proper Mounting Position (Detection at Stroke End) and Mounting Height

<Band mounting>
 D-B5 $\square / B 64$
 D-B59W

D-A3 \square
D-G39/K39

D-A44

<Tie-rod mounting>
D-A9■/A9■V
D-Z7■/Z80
D-M9■/M9■V D-Y59■/Y69■/Y7P/Y7PV
D-M9■W/M9■WV D-Y7■W/Y7■WV
D-M9 $\square A L / M 9 \square A V L \quad D-Y 7 B A L$

D-A5 $\square / A 6 \square \quad$ D-A59W

D-A3 \square C \quad-G39C/K39C

D-F5 $\square / J 5 \square$
D-F5 \square W/J59W
D-F5NTL D-F5BAL/F59F

D-A44C
$\frac{\text { G1/2 }}{\text { (Applicable cable O.D. } \varnothing 6.8 \text { to } \varnothing 11.5 \text {) Auto switch }}$

Cylinder with Lock Series CNA2

Auto Switch Proper Mounting Position (Detection at Stroke End) and Mounting Height

Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { V } \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AL } \\ & \text { D-M9 AVL } \end{aligned}$		$\begin{aligned} & \hline \mathrm{D}-\mathrm{B59W} \\ & \mathrm{D}-\mathrm{Z7} \square \\ & \mathrm{D}-\text { Z80 } \\ & \mathrm{D}-\mathrm{Y} 99 \square \\ & \mathrm{D}-\mathrm{Y} 99 \square \\ & \mathrm{D}-\mathrm{Y} 7 \mathrm{P} \\ & \mathrm{D}-\mathrm{Y} 7 \mathrm{PV} \\ & \mathrm{D}-\mathrm{Y} 7 \square \mathrm{~W} \\ & \mathrm{D}-\mathrm{Y} 7 \square W \mathrm{CD} \\ & \mathrm{D}-\mathrm{Y} 7 \mathrm{BAL} \end{aligned}$		D-P3DW \square		D-P4DWL		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A3 } \square \\ & \text { D-A3 } \square \text { C } \\ & \text { D-A44 } \\ & \text { D-A44C } \\ & \text { D-G39 } \\ & \text { D-G39C } \\ & \text { D-K39 } \\ & \text { D-K39C } \end{aligned}$		$\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$		D-F5 D-J5 \square D-F59F D-F5 \square W D-J59W D-F5BAL		$\begin{aligned} & \text { D-G5ם } \\ & \text { D-K59 } \\ & \text { D-G5NTL } \\ & \text { D-G5 } \square W \\ & \text { D-K59W } \\ & \text { D-G5BAL } \\ & \text { D-G59F } \end{aligned}$		D-A59W		D-F5NTL	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
40	6	4	10	8	4	1	6	3	3.5	0.5	0.5	0	1	0	7	4	2.5	0	4.5	1.5	12	9
50	6	4	10	8	3.5	1.5	5.5	3.5	3	1	0	0	0.5	0	6.5	4.5	2	0	4	2	11.5	9.5
63	8.5	7.5	12.5	11.5	6	5	3	1.5	5.5	4.5	2.5	1.5	3	2	9	8	4.5	3.5	6.5	5.5	14	13
80	12	10	16	14	9.5	7.5	6	4.5	9	7	6	4	6.5	4.5	12.5	10.5	8	6	10	8	17.5	15.5
100	13.5	12.5	17.5	16.5	11	10	8	6.5	10.5	9.5	7.5	6.5	8	7	14	13	9.5	8.5	11.5	10.5	19	18

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height

	$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J59 } \\ & \text { D-F5 } \square \text { W } \\ & \text { D-J59W } \\ & \text { D-F5BAL } \\ & \text { D-F59F } \\ & \text { D-F5NTL } \end{aligned}$		$\begin{aligned} & \text { D-A3 } \square \text { C } \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$		D-A44C	
	Hs	Ht	Hs	Hw	Hs	Hw
40	38	31.5	73	69	81	69
50	42	35.5	78.5	77	86.5	77
63	47	43	85.5	91	93.5	91
80	53.5	51	94	107	102	107
100	61	57.5	104	121	112	121

Minimum Stroke for Auto Switch Mounting

						n : Number of auto switches		
Auto switch model	Number of auto switches mounted		Mounting bracketsother than center trunnion	Center trunnion				
			\varnothing ¢40 $\quad \varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$		
D-A9 \square	2 (Different surfaces, Same surface), 1			15	75	90	100	110
	n		$\begin{aligned} & 15+40 \frac{(n-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 75+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots) \end{gathered}$	$\begin{aligned} & 100+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	
D-A9 \square V	2 (Different surfaces, Same surface), 1		10	75	90	100	110	
	n		$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+30 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { AL } \end{aligned}$	2 (Different surfaces, Same surface), 1		15	80	95	110	115	
	n		$\begin{aligned} & 15+40 \frac{(n-2)}{2} \\ & (n=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 115+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	
$\begin{aligned} & \text { D-M9 } \square \text { V } \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AVL } \end{aligned}$	2 (Different surfaces, Same surface), 1		10	80	95	110	115	
	n		$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \\ \hline \end{gathered}$	$\begin{array}{r} 80+30 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots) \end{array}$	$\begin{aligned} & 95+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 115+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	
D-A5 $\square /$ A6 \square D-F5 $\square / \mathrm{J} 5 \square$ D-F5 \square W/J59W D-F5BAL/F59F	2 (Different surfaces, Same surface), 1		15	90	100	110	120	
	n (Same surface)		$\begin{aligned} & 15+55 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 110+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \end{aligned}$	
D-A59W	2 (Different surfaces, Same surface), 1		20	90	100	110	120	
	n (Same surface)		$\begin{aligned} & 20+55 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+55 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 120+55 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \end{aligned}$	
		1	15	90	100	110	120	
D-F5NTL	2 (Different surfaces, Same surface), 1		25	110	120	130	140	
	n (Same surface)		$\begin{aligned} & 25+55 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{array}{r} 130+55 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots) \\ \hline \end{array}$	$\begin{aligned} & 140+55 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \end{aligned}$	
D-B5 $\square / B 64$ D-G5■/K59 D-G5 \square W D-K59W D-G5BAL D-G59F D-G5NTL	2	Different surfaces	15	90	100	110		
		Same surface	75					
	n	Different surfaces	$\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots) \end{gathered}$	$\begin{aligned} & 100+50 \frac{(n-4)}{2} \\ & (n=4,8,12,16, \cdots) \end{aligned}$	$\begin{array}{r} 110+5 \\ (\mathrm{n}=4,8, \end{array}$	$\begin{gathered} \frac{(n-4)}{2} \\ 12,16 \cdots) \end{gathered}$	
		Same surface	$\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{aligned} & 110+ \\ & (\mathrm{n}=2, \end{aligned}$	$\begin{aligned} & (n-2) \\ & 6,8, \cdots) \end{aligned}$	
		1	10	90	100	110		
D-B59W	2	Different surfaces	20	90	100	110		
		Same surface	75					
	n	Different surfaces	$\begin{gathered} 20+50 \frac{(n-2)}{2} \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots) \end{gathered}$	$\begin{aligned} & 100+50 \frac{(n-4)}{2} \\ & (n=4,8,12,16, \cdots) \end{aligned}$	$\begin{array}{r} 110+5 \\ (n=4,8, \end{array}$	$\begin{gathered} \frac{(n-4)}{2} \\ 2,16, \cdots) \\ \hline \end{gathered}$	
		Same surface	$\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+ \\ (\mathrm{n}=2, \end{gathered}$	$\begin{aligned} & (n-2) \\ & 6,8, \cdots) \end{aligned}$	
		1	15	90	100			
$\begin{aligned} & \text { D-A3 } \square \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	2	Different surfaces	35	100	100	110		
		Same surface	100					
	n	Different surfaces	$\begin{aligned} & 35+30(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 100+30(n-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		
		Same surface	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4, \cdots) \end{gathered}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 110+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$		
		1	10	100	100	110		
D-A44	2	Different surfaces	35	100	100	110		
		Same surface	55					
	n n ${ }^{\text {Different surfaces }}$		$\begin{aligned} & 35+30(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+30(n-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \end{gathered}$		
			$\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		
			10	100	100	110		

Cylinder with Lock
 Series CNA2

Minimum Stroke for Auto Switch Mounting

Auto switch model	Number of auto switches mounted		Mounting brackets other than center trunnion	Center trunnion						
			$\varnothing 40$	$\varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$			
$\begin{aligned} & \text { D-A3 } \square C \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$	2	Different surfaces		20	100		100	120		
		Same surface	100							
	n	Different surfaces	$\begin{aligned} & 20+35(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		$\begin{gathered} 100+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 120+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \end{gathered}$			
		Same surface	$\begin{gathered} 100+100(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$		$\begin{aligned} & 100+100(\mathrm{n}-2) \\ & (\mathrm{n}=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 120+100(\mathrm{n}-2) \\ & (\mathrm{n}=2,4,6,8, \cdots) \end{aligned}$			
		1	10	100		100	120			
D-A44C		Different surfaces	20	100		100	120			
		Same surface	55							
	n	Different surfaces	$\begin{aligned} & 20+35(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 120+35(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$			
		Same surface	$\begin{aligned} & 55+50(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 120+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$			
		1	10	100		100	120			
$\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / Y 7 P \\ & \text { D-Y7 } \square W \end{aligned}$		Different surfaces, Same surface), 1	15	80	85	90	95	105		
		n	$\begin{aligned} & 15+40 \frac{(n-2)}{2} \\ & (n=2,4,6,8 \cdots) \end{aligned}$	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 85+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 90+40 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 95+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$	$\begin{aligned} & 105+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots) \end{aligned}$		
$\begin{aligned} & \text { D-Y69 } \square / Y 7 P V \\ & \text { D-Y7 } \square W V \end{aligned}$		Different surfaces, Same surface), 1	10	65		75	80	90		
		n	$\begin{aligned} & 10+30 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \end{aligned}$	$\begin{array}{r} 65+3 \\ (n=4,8 \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 12,16 \ldots) \end{aligned}$	$\begin{gathered} 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots) \end{gathered}$	$\begin{gathered} 80+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots) \end{gathered}$	$\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots) \end{gathered}$		
D-Y7BAL		Different surfaces, Same surface), 1	20	95		100	105	110		
		n	$\begin{aligned} & 20+45 \frac{(\mathrm{n}-2)}{2} \\ & (\mathrm{n}=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{array}{r} 95+4 \\ (\mathrm{n}=4,8 \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 2,16 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 100+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots) \\ \hline \end{gathered}$	$\begin{aligned} & 105+45 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+45 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots) \\ & \hline \end{aligned}$		
D-P3DW \square		Different surfaces, Same surface), 1	15	85			95	100		
		n	$\begin{aligned} & 15+50 \frac{(n-2)}{2} \\ & (n=2,4,6,8 \cdots) \end{aligned}$	$\begin{gathered} 85+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$			$\begin{gathered} 95+50 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+50 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$		
D-P4DWL		Different surfaces, Same surface), 1	15	120		130	140			
		n	$\begin{aligned} & 15+65 \frac{(n-2)}{2} \\ & (n=2,4,6,8 \cdots) \\ & \hline \end{aligned}$	$\begin{array}{r} 120+6 \\ (\mathrm{n}=4,8, \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 2,16 \cdots) \end{aligned}$	$\begin{aligned} & 130+65 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{gathered} 140+65 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$			

Operating Range

Auto switch model	Bore size				
	40	50	63	80	100
D-A9 $\square /$ A9 $\square \mathrm{V}$	7.5	8.5	9.5	9.5	10.5
D-M9 $\square / M 9 \square V$ D-M9 \square W/M9 \square WV D-M9 \square AL/M9 \square AVL	4.5	5	5.5	5	6
D-Z7口/Z80	8.5	7.5	9.5	9.5	10.5
$\begin{aligned} & \hline \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$	9	10	11	11	11
D-A5 $\square /$ /A6 \square					
D-B5■/B64					
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
$\begin{array}{\|l} \text { D-Y59 } / \text { Y69 } \\ \text { D-Y7P/Y7■V } \\ \text { D-Y7 } \square W / Y 7 \square W V ~ \\ \text { D-Y7BAL } \end{array}$	8	7	5.5	6.5	6.5

\mathbf{y}		(mm)			
Auto switch model	Bore size				
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
D-F5 $\square /$ J5 $\square / F 59 F ~$ D-F5 \square W/J59W D-F5BAL/F5NTL	4	4	4.5	4.5	4.5
D-G5 $\square / K 59 / G 59 F ~$ D-G5 $\square W / K 59 W ~$ D-G5NTL/G5BAL	5	6	6.5	6.5	7
D-G5NBL	35	35	40	40	40
D-G39/K39 D-G39C/K39C	9	9	10	10	11
D-P3DW \square	4.5	5	6	5.5	6
D-P4DWL	4	4	4.5	4	4.5

* Since this is a guideline including hysteresis, not meant to be guaranteed. (assuming approximately $\pm 30 \%$ dispersion) There may be the case it will vary substantially depending on the ambient environment.

Auto Switch Mounting Bracket/Part No.

<Tie-rod mounting>

Auto switch model	Bore size (mm)				
	40	50	63	80	100
$\begin{aligned} & \text { D-A9 } \square / \text { A9 } \square \text { V } \\ & \text { D-M9 } \square / \text { M9 } \square V \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AL/M9 } \square \text { AVL } \end{aligned}$	BA7-040	BA7-040	BA7-063	BA7-080	BA7-080
$\begin{aligned} & \text { D-A5 } \square / \text { A6 } \square / A 59 W \\ & \text { D-F5 } \square / J 5 \square / F 5 \square W / J 59 W \\ & \text { D-F5NT/F5BAL/F59F } \end{aligned}$	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3 \square C/A44C/G39C/K39C	ВАЗ-040	ВАЗ-050	ВАЗ-063	ВАЗ-080	ВАЗ-100
$\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BAL } \end{aligned}$	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080
D-P3DW \square	BMB8-050S	BMB8-050S	BA7T-063S	BA7T-080S	BA7T-080S
D-P4DWL	BAP2-040	BAP2-040	BAP2-063	BAP2-080	BAP2-080

<Band mounting>

Auto switch model	Bore size (mm)				
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
D-A3 $\square / A 44 ~$ D-G39/K39	BDS-04M	BDS-05M	BMB1-063	BMB1-080	BMB1-100
D-B5 $\square / B 64 ~$ D-B59W					
D-G5 $\square / K 59 ~$ D-G5 \square W/K59W D-G59F D-G5NTL D-G5NBL	BH2-040	BA5-050	BAF-06	BAF-08	BAF-10

* Auto switch mounting bracket is attached to the D-A3 $\square \mathrm{C} / \mathrm{A} 44 \mathrm{C} / \mathrm{G} 39 \mathrm{C} / \mathrm{K} 39 \mathrm{C}$.

To order, indicate as shown below, according to the cylinder size.
(Example) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-5$
ø63: D-A3 $\square \mathrm{C}-6, \varnothing 80: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-8, \varnothing 100: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-10$
To order the auto switch mounting bracket separately, use the part number as shown above.

[Mounting screw set made of stainless steel]

The following mounting screw set made of stainless steel (including set screw) is available. Use it in accordance with the operating environment. (Order the auto switch mounting bracket and band separately, since they are not included.)

BBA1: For D-A5/A6/F5/J5 types

BBA3: For D-B5/B6/G5/K5 types
The D-F5BAL/G5BAL auto switches are set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, the BBA1 or BBA3 is attached.
Note 1) Refer to Best Pneumatics No. 3 for details about the BBA1 and BBA3.
Note 2) When using the D-M9 \square AL/D-M9 $\square A V L / Y 7 B A L$, do not use the steel set screws included in the auto switch mounting brackets above (BA7- $\square \square \square$, BA4- $\square \square \square$). Order a stainless steel screw set (BBA1) separately, and select and use the M4 x6L stainless steel set screws included in the BBA1.

Auto switch type	Model	Electrical entry	Features		
Reed	D-A93V, A96V	Grommet (Perpendicular)	-		
	D-A90V		Without indicator light		
	D-A53, A56, B53, Z73, Z76	Grommet (In-line)	-		
	D-A67, Z80		Without indicator light		
Solid state	D-M9NV, M9PV, M9BV	Grommet (Perpendicular)	-		
	D-Y69A, Y69B, Y7PV				
	D-M9NWV, M9PWV, M9BWV		Diagnostic indication (2-color indication)		
	D-Y7NWV, Y7PWV, Y7BWV				
	D-M9NAVL, M9PAVL, M9BAVL		Water resistant (2-color indication)		
	D-Y59A, Y59B, Y7P	Grommet (In-line)	-		
	D-F59, F5P, J59				
	D-Y7NW, Y7PW, Y7BW		Diagnostic indication (2-color indication)		
	D-F59W, F5PW, J59W				
	D-F5BAL, Y7BAL		Water resistant (2-color indication)		
	D-F5NTL, G5NTL		With timer		
	D-P4DWL, P5DWL		Magnetic field resistant (2-color indication)		
* A pre-wired connector is available for solid state auto switches. For details, refer to Best Pneumatics No. 3. * Normally closed ($\mathrm{NC}=\mathrm{b}$ contact), solid state auto switches ($\mathrm{D}-\mathrm{F9G} / \mathrm{F} 9 \mathrm{H} / \mathrm{Y} 7 \mathrm{G} / \mathrm{Y} 7 \mathrm{H}$) are also available. For details, refer to Best Pneumatics No. 3. * Wide range detection solid state auto switch (D-G5NBL) is also available. For details, refer to Best Pneumatics No. 3.					

Design of Equipment and Machinery

Warning

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders.
Devise a safe structure by attaching protective covers that prevent direct contact with the human body, or in cases where there is a danger of contact, provide sensors or other devices to perform an emergency stop, etc., before contact occurs.
2. Use a balance circuit, taking cylinder lurching into consideration.
In cases such as an intermediate stop, where a lock is operated at a desired position within the stroke and air pressure is applied from only one side of the cylinder, the piston will lurch at high speed when the lock is released. In such situations, there is a danger of causing human injury by having hands or feet, etc., caught, and also a danger for causing damage to the equipment. In order to prevent this lurching, a balance circuit such as the recommended pneumatic circuits (back page 2) should be used.

Selection

. Warning

1. When in the locked state, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.
Use caution, because an external action such as an impacting load, strong vibration or turning force, may damage the locking mechanism or reduce its life.
2. Consider stopping accuracy and the amount of overrun when an intermediate stop is performed.
Due to the nature of a mechanical lock, there is a momentary lag with respect to the stop signal, and a time delay occurs before stopping. The cylinder stroke resulting from this delay is the overrun amount. The difference between the maximum and minimum overrun amounts is the stopping accuracy.

- Place a limit switch before the desired stopping position, at a distance equal to the overrun amount.
- The limit switch must have a detection length (dog length) of the overrun amount $+\alpha$.
- For SMC's auto switches, the operating range is between 4 and 40 mm . (It varies depending on a switch model.) When the overrun amount exceeds this range, selfholding of the contact should Stop signal be performed at the auto switch load side.
*For stopping accuracy, refer to page 4.

3. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.
To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.

Specific Product Precautions 2

Be sure to read before handling.
Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) for Actuators and Auto Switches Precautions.

Mounting

\triangle Caution

2. Caution when using the basic style or replacing the mounting bracket.
The lock unit and cylinder rod cover are assembled as shown in the figure below. For this reason, it cannot be installed as in the case of common air cylinders, by using the basic style and screwing the cylinder tie-rods directly to machinery.
Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.
Use a socket wrench for replacing the mounting bracket or tightening the unit holding tie-rod.

Bore size (mm)	Mounting bracket nut			Unit holding tie-rod	
	Nut	$\begin{array}{\|c\|} \hline \text { Width } \\ \text { across flats } \end{array}$	Socket	$\begin{array}{\|c\|} \hline \text { Width } \\ \text { across flats } \\ \hline \end{array}$	Socket
40, 50	$\begin{gathered} \text { JIS B } 1181 \text { Class } 3 \\ \text { M8 } 1.25 \end{gathered}$	13	JIS B 4636 2-point angle socket 13	10	JIS B 4636 2-point angle socket 10
				13	JIS B 4636 2-point angle socket 13
63	$\begin{gathered} \text { JIS B } 1181 \text { Class } 3 \\ \text { M10 } 1.25 \end{gathered}$	17	JIS B 4636 2-point angle socket 17	13	JIS B 4636 2-point angle socket 13
80, 100	$\begin{gathered} \text { JIS B } 1181 \text { Class } 3 \\ \text { M12 } 1.25 \end{gathered}$	19	JIS B 4636 2-point angle socket 19	17	JIS B 4636 2-point angle socket 17

Adjustment

\triangle Caution

1. Adjust air balance for cylinder. Balance the load by adjusting the air pressure in the cylinder rod end and head end after the lock is released when the load is mounted on cylinder. When you have this air balance, cylinder ejection at lock release can be avoided.
2. Adjust mounting position for detection area of auto switch, etc. When intermediate stop is done, adjust the mounting position for detection area of auto switch, etc., with consideration of overrun distance to required stop position.

Pneumatic Circuit

. Warning

1. Be certain to use a pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.
In order to prevent cylinder lurching after a lock stop, when restarting or when manually unlocking, a circuit should be used to which will apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.

Pneumatic Circuit

© Warning

2. The effective area of the lock release solenoid valve should be at least 50% of the effective area of the cylinder driving solenoid valve, and it should be installed as close to the cylinder as possible so that it is closer than the cylinder driving solenoid valve.
If the effective area of the lock release solenoid valve is smaller than the cylinder driving solenoid valve or if it is installed at a distance from the cylinder, the time required for exhausting air for releasing the lock will be longer, which may cause a delay in the locking operation.
The delay in the locking operation may result in problems such as increase of overrunning when performing intermediate stop or emergency stop during operation, or if maintaining position from the operation stop state such as drop prevention, workpieces may be dropped depending on the timing of the load action to the operation delay of the lock.
3. Avoid backflow of the exhaust pressure when there is a possibility of interference of exhaust air, for example for a common exhaust type valve manifold. The lock may not operate properly when the exhaust air pressure backflows due to interference of the exhaust air when exhausting air for lock release. It is recommended to use an individual exhaust type manifold or individual valves.
4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock. When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.
If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
6. Basic circuit
1) [Horizontal]

Forward

2) [Vertical]
[Load in the direction of rod extension] [Load in the direction of rod retraction]

Pneumatic Circuit

\triangle Caution

1. 3-position pressure center solenoid valve and regulator with check valve can be replaced with two 3-port normally open valves and a regulator with relief function.

[Example]
1) [Horizontal]

2) [Vertical]
[Load in the direction of rod extension]
[Load in the direction of rod retraction]

Manually Unlocking

Warning

1. Never operate the unlocking cam until safety has been confirmed. (Do not turn to the FREE side.)

- When unlocking is performed with air pressure applied to only one side of the cylinder, the moving parts of the cylinder will lurch at high speed causing a serious hazard.
- When unlocking is performed, be sure to confirm that personnel are not within the load movement range and that no other problems will occur if the load moves.

2. Before operating the unlocking cam, exhaust any residual pressure which is in the system.
3. Take measures to prevent the load from dropping when unlocking is performed.

- Perform work with the load in its lowest position.
- Take measures for drop prevention by strut, etc.

\triangle Caution

1. The unlocking cam is an emergency unlocking mechanism only. During an emergency when the air supply is stopped or cut off, this is used to alleviate a problem by forcibly pushing back the release piston and brake spring to release the lock.
2. When installing the cylinder into equipment or performing adjustments, etc., be sure to apply air pressure of 36 psi or more to the unlocking port, and do not perform work using the unlocking cam.
3. When releasing the lock with the unlocking cam, it must be noted that the internal resistance of the cylinder will be high, unlike normally unlocking with air pressure.

Bore size (mm)	Cylinder internal resistance (N)	Cam operating torque (guide) (N.m)	Width across flats dimension (mm)
$\mathbf{4 0}$	108	5.9	5
$\mathbf{5 0}$	275	11.8	6
$\mathbf{6 3}$	432	12.8	7
$\mathbf{8 0}$	686	20.6	7
$\mathbf{1 0 0}$	765	23.5	9

4. Be sure to operate the unlocking cam (the arrow or mark on the head part of the unlocking cam) on the FREE side and do not turn with a torque greater than the maxmum cam operating torque. There is a danger of damaging the unlocking cam if it is turned excessively.
5. For safety reasons, the unlocking cam is constructed so that it cannot be fixed in the unlocked state.

Locked state
[Principle]
If the unlocking cam is turned counterclockwise with a tool such as an adjustable angle wrench, the release piston is pushed back and the lock is released. Since the lever will return to its original position when released and become locked again, it should be held in this position for as long as unlocking is needed.

Series CNA2
Specific Product Precautions 4

Be sure to read before handling.
 Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products"
 (M-E03-3) for Actuators and Auto Switches Precautions.

Maintenance

\triangle Caution

1. Never disassemble the lock unit.

It is very dangerous to disassemble the lock unit of the CNA2 series because it has a strong spring installed inside, so never disassemble the lock unit. Replace the lock unit if the seal or other internal parts need to be replaced.
2. Lock unit model

To order the CNA2 series lock units for maintenance, use the order numbers given in the below table.

How to Order

(Both directions)

* The lock unit for long stroke is applicable only to the flange style with 1001 stroke or longer whose bore size is $\varnothing 50$ to $\varnothing 100$.
(Example: CNA2-100D-UAL)

2. How to replace lock units
1) Loosen the tie-rod nuts (4 pcs.) on the cylinder head cover side by using a socket wrench.
For applicable socket, refer to the below table.

Bore size (mm)	Nut	Width across flats dimension	Socket
$\mathbf{4 0 , 5 0}$	JIS B 1181 Class 2 M8 x 1.25	13	JIS B 4636 + 2-point angle socket 13
$\mathbf{6 3}$	JIS B 1181 Class 2 M10 $~ 1.25$	17	JIS B 4636 + 2-point angle socket 17
$\mathbf{8 0 , 1 0 0}$	JIS B 1181 Class 2 M12 x 1.75	19	JIS B 4636 + 2-point angle socket 19

2) Remove the tie-rods,

3) Apply 44 psi or more of compressed air to the unlocking port, and pull out the piston rod assembly

4) Similarly, apply 44 psi or more of compressed air to the unlocking port of the new lock unit, and replace the new lock unit's temporary axis with the previous piston rod assembly.

Note) Be sure to keep applying compressed air with a pressure of at least 44 psi to the lock releasing port when replacing the temporary rod of a new lock unit with a piston rod assembly.
If the compressed air applied to the lock releasing port is released (when it is in the lock condition) while the temporary rod and the piston rod assembly are removed from the lock unit, the brake shoe will be deformed and it will become impossible to insert the piston rod assembly, which will make the lock unit impossible to use.

5) Reassemble in reverse order from step 2) to 1).

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC), American National Standards Institute (ANSI)*1) and other safety regulations.

! 1 Caution:
Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
I
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
1 \triangle Danger :
Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

I I ISO 4413: Hydraulic fluid power - General rules relating to systems. \square

- IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General \square
| \square requirements) \square
ㅁ ISO 10218-1: Manipulating industrial robots - Safety. \square
I ANSI / (NFPA) T2.25.1 R2: Pneumatic fluid power - Systems standard for industrial machinery. \square
- NFPA (Fluid) T2.24.1 R1: Hydraulic fluid power - Systems standard for stationary industrial \square

I \square machinery. \square
II NFPA 79: Electrical Standard for Industrial Machinery. \square
II ANSI / RIA / ISO 10218-1: Robots for Industrial Environment - Safety Requirements - Part 1 - Robot. \square

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. \square
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment. \square
2. Only personnel with appropriate training should operate machinery and equipment. \square
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced. \square
3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed. \square
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully. I
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction. \square
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions. \square
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight. \square
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog. \square
10. An application which could have negative effects on people, property, or animals requiring special safety analysis. \square
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

\triangle Caution

1. The product is provided for use in manufacturing industries. \square The product herein described is basically provided for peaceful use in manufacturing industries. $\mathrm{\square}$
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. \square If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ \square Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements". Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered. ${ }^{* 2)}$]
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch. \square
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. $\mathrm{\square}$
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product. \square
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products. \square
*2) Vacuum pads are excluded from this 1 year warranty. \square
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. प Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weap\square ons of mass destruction (WMD) or any other weapon is strictly prohibited. \square
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Safety Instructions Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

SMC Corporation of America www.smcusa.com

SMC Pneumatics (Canada) Ltd. www.smepneumatics.ca
(800) SMC.SMC1 (762-7621)

For International inquires: www.smcworld.com

[^0]: Lead wire length symbols： $0.5 \mathrm{~m} \ldots . . . \mathrm{Nil}$（Example）M9NW

 | $1 \mathrm{~m} . . .$. | M | （Example）M9NWM |
 | :--- | :--- | :--- |
 | $3 \mathrm{~m} \ldots .$. | L | （Example）M9NWL |

